AT-free graphs: linear bounds for the oriented diameter

نویسندگان

  • Fedor V. Fomin
  • Martín Matamala
  • Erich Prisner
  • Ivan Rapaport
چکیده

Let G be a bridgeless connected undirected (b.c.u.) graph. The oriented diameter of G, OD(G), is given by OD(G)=min{diam(H): H is an orientation of G}, where diam(H) is the maximum length computed over the lengths of all the shortest directed paths in H . This work starts with a result stating that, for every b.c.u. graph G, its oriented diameter OD(G) and its domination number (G) are linearly related as follows: OD(G)6 9 (G)− 5. Since—as shown by Corneil et al. (SIAM J. Discrete Math. 10 (1997) 399)— (G)6diam(G) for every AT-free graph G, it follows that OD(G)6 9diam(G) − 5 for every b.c.u. AT-free graph G. Our main result is the improvement of the previous linear upper bound. We show that OD(G)6 2diam(G)+11 for every b.c.u. AT-free graph G. For some subclasses we obtain better bounds: OD(G)6 2 diam(G)+ 25 2 for every interval b.c.u. graph G, and OD(G)6 5 4 diam(G)+ 29 2 for every 2-connected interval b.c.u. graph G. We prove that, for the class of b.c.u. AT-free graphs and its previously mentioned subclasses, all our bounds are optimal (up to additive constants). ? 2003 Elsevier B.V. All rights reserved. MSC: 05C12; 05C20; 05C69; 05C62

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New bounds on proximity and remoteness in graphs

The average distance of a vertex $v$ of a connected graph $G$is the arithmetic mean of the distances from $v$ to allother vertices of $G$. The proximity $pi(G)$ and the remoteness $rho(G)$of $G$ are defined as the minimum and maximum averagedistance of the vertices of $G$. In this paper we investigate the difference between proximity or remoteness and the classical distanceparameters diameter a...

متن کامل

On the edge-connectivity of C_4-free graphs

Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

-λ coloring of graphs and Conjecture Δ ^ 2

For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...

متن کامل

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2004